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A time-going-backward quasidynamics method is developed for global optimization of cluster structures,
and its merits are examined by a simple classical mechanics model, indicating that the probability for the
system to jump over high potential barriers by this method is much higher than that by common annealing
methods. The method is then used to investigate the isomers of a Lennard-Jones cluster containing 38 atoms
and the C60 cluster with the Brenner potential, and can easily give the most stable structures, which are difficult
to obtain by common annealing methods. In addition, for small carbon clusters Cn �n=21–30�, most of the
potential energies optimized by this method are much lower than those obtained by a genetic algorithm.
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I. INTRODUCTION

The structures of clusters, especially the most stable ones,
are a key to understanding the physical and chemical prop-
erties of clusters. However, the structural investigation of
clusters is a challenge to scientists, both experimentally and
theoretically. Even with modern probe techniques �1�, for
most clusters it is difficult to obtain unambiguous structural
information from experiments. On the theoretical side, the
potential energy surfaces �PESs� for clusters containing tens
of atoms or more are usually related to very complex func-
tions, and the search for their global minima has been proved
to be an NP-hard problem �2�. Therefore, many global opti-
mization methods have been developed to find the most
stable isomers in recent decades �2–9�. A detailed discussion
of the merits and flaws of various methods can be found in
Ref. �10�.

Global optimization methods based on annealing are
widely used, and have proved successful in finding the glo-
bal minima of many PESs. However, some global minima
located in a potential well surrounded by high potential bar-
riers usually cannot be reached by these methods unless the
annealing starts from a specific “seed,” which may be rather
encountered occasionally in many attempts than forecast. For
example, annealing methods, whatever strategies were
adopted, can hardly find the global minimum of the Lennard-
Jones �LJ� cluster containing 38 atoms �LJ38� starting from a
common seed �10–12�; the search for isomers of the C60
cluster with annealing methods lasted for a long time, but the
most stable one was not found until 1998 �13�. These facts
indicate that the ability of annealing methods on jumping
over the high potential barriers may be limited.

In the present work, a quasidynamics method �14,15�
based on a time-going-backward �TGB� model is developed
for global optimization. The substantial differences between
the time-going-backward quasidynamics method �TQM� and
common annealing methods are examined carefully by quan-
titative analysis and numerical simulations. To check the ef-
fectiveness of our method, we use it to study the clusters of

38-atom LJ cluster and C60 with the Brenner potential func-
tion �16�, and get the most stable isomers easily from arbi-
trarily selected seeds. In addition, for some small carbon
clusters, it is shown that the potential energies of the struc-
tures obtained by TQM are lower than those found by an
elaborately designed genetic algorithm �17�.

II. TGB MODEL AND SEARCHING METHOD

A. Main idea of the TGB model

It is well known that, for a conservative system, the rep-
resentative point density D�p ,q , t� in � space does not
change along the phase trajectories according to the Liou-
ville theorem, and the phase trajectories do not cross each
other because the same mechanics system developing from
the same initial condition has a unique motion rule. How-
ever, for a dissipative system, the motion of a particle is
governed by the Langevin equation,

m
d�

dt
= F − �� + FR, �1�

where F, �, and FR are the conservative force, a damping
coefficient, and the random force, respectively. It can be de-
duced that, because of the damping force, the representative
point density D�p ,q , t� increases with time, and representa-
tive points could ultimately converge at several points �18�,
such as the points F1 and F2 in Fig. 1�a�, which can be
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FIG. 1. Global optimization processes �a� in � space and �b� on
a PES, on which the corresponding representative points are
located.
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treated as local minima of the system. If there is no random
force, it is certain that the point S1 finally arrives at F1, and
S2 arrives at F2. However, because of the random force, the
phase trajectories can cross each other at some points, such
as the cross point C in Fig. 1�a�, and the initial points S1 and
S2 may randomly arrive at final points F1 and F2. This is the
underlying theory of some global optimization methods
based on annealing.

The annealing processes shown in � space �Fig. 1�a�� can
also be expressed on the PES as shown in Fig. 1�b�, where
the initial points S1, S2, the cross points C1, C2, and the
final points F1, F2 are located. Supposing the annealing pro-
cess starts from a random seed, e.g., S1, the global minimum
F2 can be easily reached if the potential barrier between F1
and F2 is not high, as shown by the real line �C1�. Whereas,
if the potential barrier between F1 and F2 is as high as the
dashed line shows �C2�, the system may be trapped in F1
because it does not have enough kinetic energy to jump over
the barrier, causing the global minimum F2 being missed.
One way to solve this problem is to replace the seed by, for
example, the unpredictable one S2, and another is to heat the
system above C2 by resetting the velocities of the atoms with
Maxwell distribution at high temperatures. The heating may
be abrupt or multistepped. For the former all the atoms are
simultaneously assigned velocities at higher temperatures,
while for the latter partial atoms are warmed up gradually by
randomly resetting bigger velocities. In the followed cooling
process, the system may return to S1, or jump over C2 to F2.
However, the probability to reach F2 is very low, which will
be shown by a simple model in the following, leaving the
trapping problem unsolved.

In the present work, we use another heating method
�14,15� to ameliorate the trapping problem. For a classical
mechanics system initially located at F1, we integrate Eq. �1�
with a negative time step, i.e., compel the system to “evolve”
from its “present” to its “past,” which is named the TGB
procedure in this paper. This seems a trivial trick, but can
result in a profound effect on the dissipative system, because
the damping force −���t� in Eq. �1� no longer dissipates
energy, but contributes kinetic energy to the system. Clearly,
if the average intensities of the random forces remain un-
changed, i.e., the random forces just lead to fluctuation of the
kinetic energy, the system is heated by the damping force.
Unlike the heating by velocity rescaling, the heating by the
damping force can keep the moving directions of the atoms
unchanged on the whole; these are mainly determined by the
directions of the initial velocities. As a result, the probability
for a system to jump over a high barrier should be as high as

that over a low barrier, because the directions of the initial
velocities are isotropic. This phenomenon can be tested by
the simple model shown in Fig. 2. Initially, 10 000 atoms are
placed on the base of a potential well with its left barrier kept
at 1 eV and its right barrier modulated between 1 and 10 eV
in a series of simulations. Then the atoms are assigned ve-
locities taken from a Maxwell distribution at a temperature
T, corresponding to 1 eV. In the followed evolution, the in-
teractions between the atoms are ignored, the damping coef-
ficient � and the random force FR are taken with the same
magnitudes as the parameters of our calculations in Sec. III.
It should be pointed out that in this system the time goes
either in the normal way or in the TGB way, leading to very
different results. After the system evolves for enough time,
the probabilities for the atoms to escape from the potential
well are counted and listed in Table I. When the time goes in
the normal way, the probabilities for jumping over high bar-
riers are very low, though all the atoms finally escape from
the potential well because of the effects of random forces.
However, for the TGB procedure, the probabilities for escap-
ing from the high barrier are as high as those from the low
barrier. Clearly, the probability for the system to jump over a
high barrier in the TGB way is much higher than that ob-
tained by common methods. If the atoms are assigned veloci-
ties at much higher temperatures, for example corresponding
to 100 eV, the two barriers may be jumped over with similar
probabilities in normal way, but for the cluster optimization
process, such abrupt temperature change may lead to the
explosion of clusters.

B. Simulation model and details

The common cluster growth in the gas phase can be di-
vided into three steps: production of isolated atoms from a
solid source at high temperatures, condensation to form
crude clusters in the course of cooling and evolution at a low
temperature to form the final products. Based on these steps,

FIG. 2. 10 000 atoms at the base of a potential well with its left
barrier kept at 1 eV and right barrier changed between 1 and 10 eV.

TABLE I. The probabilities for atoms to escape from the potential well.

Right barrier
�eV�

Normal dissipative system �%� TGB dissipative system �%�

Left Right Left Right

1 50.62 49.38 49.87 50.13

2 74.05 25.95 51.35 48.65

5 98.15 1.85 52.28 47.72

10 99.97 0.03 52.05 47.95
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some annealing methods cool a seed from high temperatures
with different cooling strategies to search for the global
minimum. A quasidynamics method, which is also a kind of
annealing method, was developed to search for the isomer
spectra of small carbon clusters by Sheng et al. �19�. Isolated
atoms, which are assigned an initial temperature much higher
than the melting point of their bulk materials, are placed in a
cubic box, on which periodic boundary conditions are ap-
plied. The system is cooled toward a lower temperature T, at
which the configuration of the cluster hardly changes, by
resetting the velocity of one randomly selected atom every
interval �t with the equation

vnew = �1 − ��1/2vold + �1/2vT��� , �2�

where � is a parameter between 0 and 1, and vT��� is a
velocity selected randomly from the Maxwell velocity at T
via a random number �. Velocity resetting with Eq. �2� cor-
responds to taking the damping coefficient �=m� /2�t and
the random force FR=m�1/2�T��� /�t in Eq. �1�, where m is
the atomic mass �20�. According to our previous work �19�,
0.1 is an appropriate value for � and a small change of it
does not affect the searching results much. The interval �t is
determined by the method described in detail in Ref. �19�.
After the system is in equilibrium at T, it is then further
cooled to 0 K by the damping method �21� to obtain an
isomer and the corresponding potential energy. This simple
method is successful in obtaining the global minima of some
small carbon clusters �19,22�, and the global minimum may
be found among dozens of simulation results, but for clusters
larger than 30 atoms enormous computing time has to be
spent to find the global minima.

Instead of starting from isolated atoms, here we start
searching from an arbitrarily selected seed at a lower tem-
perature Ti, and the seed evolves in the TGB way. That is, the
integral time step is negative, and the velocity of one ran-
domly selected atom is rescaled at every interval �t using
Eq. �2� in the inverse form as vnew= �vold−�1/2vT���� /
�1−��1/2 �backward�. When the temperature of the system
reaches a higher temperature Tf, which is usually near to but
lower than the melting point of the bulk materials, the system
is then cooled by the quasidynamics method �forward�. The
above backward-forward cycle is always allowed to run sev-
eral times from the same seed to obtain a group of results. If
the lowest energy obtained in the group is lower than the
energy of the seed, the corresponding isomer will be treated
as a new seed for further simulations. If no lower-energy
isomer can be found after enough cycles, the simulations are
finished, and the last seed is deemed to be the global mini-
mum. Generally, according to our experience, 50 cycles is
enough for most clusters.

III. RESULTS AND DISCUSSIONS

A. LJ 38-atom cluster

LJ clusters are good examples for evaluating the effi-
ciency of a global optimization method �10�. For LJ38, the
lowest-energy isomer is a face-centered-cubic �fcc� truncated
octahedron, rather than based on an icosahedral structure like

many other LJ clusters, and it is much harder to find its
global minimum by common annealing methods because of
its complex PES �12�. In the following, to compare the
search abilities of different annealing methods, the TQM and
several annealing methods are used to search for the most
stable isomer of LJ38. Taking the parameters of argon for the
LJ potential �23�, we first perform the search by the quasi-
dynamics method. Briefly, 38 isolated atoms evolve from
80 K in a cubic box with periodic boundary conditions ap-
plied, during which Eq. �2� is used to cool the system every
7000 fs. After the system reaches 10 K, it is then cooled to
0 K by the damping method �21�, and the structure and cor-
responding potential energy are recorded. This procedure
runs 80 times, and the lowest-energy isomer of the 80 results
is shown in Fig. 3�a�. It is easy to understand that the fcc
truncated octahedron LJ38 isomer �Fig. 3�b�� is not obtained,
because there existed some high potential barriers between
the seed �Fig. 3�a�� and the global minimum �Fig. 3�b�� �12�,
and these barriers cannot be jumped over easily by many
annealing methods. Taking the isomer shown in Fig. 3�a� as
a seed, then we performed the search by the TQM. The in-
terval �t for using Eq. �2� or its inverse form on the system
is still 7000 fs, while Ti and Tf are 10 and 40 K, respectively.
We do 160 simulations from this seed, and the global mini-
mum with the fcc truncated octahedron structure shown in
Fig. 3�b� is obtained 11 times.

In order to test the efficiency of the TGB procedure fur-
ther, next we perform the annealing simulations in two dif-
ferent ways from the same seed �Fig. 3�a��. In the first way,
the system is assigned a high temperature Tf directly, and
then evolves as in the quasidynamics method. These simula-
tions are also performed 160 times, but no global minimum
is obtained. One may think that the evolution time in this
process is much shorter than that in the TGB procedure, so
that the probability for finding the global minimum in the
annealing process is reduced. Accordingly, in the second an-
nealing method, the system is gradually heated from Ti to Tf
by resetting the velocity of one randomly selected atom ev-
ery interval �t with Eq. �2�, which takes nearly the same
time as the heating by the TGB procedure, and then the
system evolves as in the quasidynamics method. Among the
160 simulations, only one reaches the global minimum.
Clearly, the TGB procedure can greatly increase the likeli-
hood of isomers to jump over the potential barriers, as ana-
lyzed in Sec. II A.

In recent years, some new methods, for example the par-
allel tempering method �24�, have been developed to im-
prove the traditional annealing methods to cope with high
barriers. In the parallel tempering scheme, several simula-

FIG. 3. The �a� seed and �b� global minimum structures of the
LJ38 cluster.
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tions from different seeds are performed simultaneously at
different total energies, during which two simulations at dif-
ferent energies attempt to exchange their configurations with
some predetermined probabilities. The action of the ex-
change equates to heating or cooling the system abruptly,
which is similar to the heating in the general annealing pro-
cess. In this sense, the efficiency of the parallel tempering
method to cause jumping over high barriers may be im-
proved if the system is heated in the TGB way.

B. C60 cluster

The C60 cluster is also used to test the search efficiency of
our TGB method. The Brenner potential function is still
adopted to describe the interaction of the carbon atoms
�16,25�. For the parameters of Eq. �2�, the interval �t is
450 fs, and Ti and Tf are 1000 and 4000 K, respectively. We
first perform 16 simulations with the TQM starting from a
graphite layer with 60 atoms named S1 �Fig. 4�a��, whose
potential energy per atom �PEPA� is −6.723 37 eV. Among
the 16 results, the lowest energy is −7.000 78 eV, which cor-
responds to the structure shown in Fig. 4�b�, named S2. Tak-
ing S2 as a new seed, we obtain S3 shown in Fig. 4�c� in the
next 16 results, then S3 to S4 �Fig. 4�d�� and S4 to S5 �Fig.
4�e�� with the same procedure. The lowest energies obtained
in every group, i.e., the energies of the seeds for the follow-
ing group, are illustrated in Fig. 5. That is, in every 16 simu-
lation groups, a new seed with energy lower than that of the
previous one can always appear, and the perfect C60 �S5�
with a PEPA of −7.045 16 eV is found in the fourth group. A
similar procedure has been successfully used for producing
the most stable isomer of C36 �15�. These results indicate that

our TQM is a robust approach for searching for the lowest-
energy structure.

By comparison, the system is assigned a high temperature
Tf directly, and annealed by resetting the velocity of one
randomly selected atom with Eq. �2� every 450 fs. Once the
lowest energy obtained in a group of 16 results is lower than
the energy of the seed, the corresponding isomer is treated as
a new seed for the followed simulations. The lowest energies
of every group are illustrated in Fig. 5. Unfortunately, after
ten groups of simulations, the energy of the most optimized
isomer is still very high.

Historically, people tried to obtain the most stable C60 by
different annealing methods with the Tersoff potential �26�,
tight-binding method �27–30�, and Car-Parrinello method
�31�, but it was in 1998 that the most stable C60 was first
obtained from a common seed by the Brenner potential after
about 200 ns annealing �13�. In our searching process, a
backward-forward cycle needs about 1 ns, which is two or-
ders of magnitude smaller than the annealing time in Ref.
�13�.

C. Cn (n=21–30) clusters

In addition to annealing methods, the genetic algorithm
�GA� is another very popular global optimization method,
and a comparison of the TQM with GAs is very interesting.
We optimize Cn �n=21–30� clusters with the Brenner poten-
tial, and compare our results with the results in Ref. �17�
obtained by a GA. For the parameters of Eq. �2�, the inter-
vals �t for different clusters are determined by the method
described in Ref. �19�, and Ti and Tf are 1000 and 3000 K,
respectively. It is noted that Tf =3000 K is now as high as the
temperature in the third growth step of carbon clusters men-
tioned in Sec. II B �13�. The searching procedure is the same

FIG. 6. TQM-optimized structures of C21–C30 at
Tf =3000 K.

FIG. 7. PEPA of the isomers obtained by different optimization
processes.

FIG. 4. Structures of the seed during the optimization process by
the TQM.

FIG. 5. PEPA of the seeds obtained in every group during the
optimization processes by the TQM and the general annealing
method without the TGB procedure.
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as that for C60. The simulations also start from graphite lay-
ers with given number of atoms, and if the lowest energy
obtained in a group of 16 results is lower than the energy of
the seed, the corresponding isomer is treated as a new seed
for further simulations. The TQM-optimized structures
shown in Fig. 6 are obtained in the fifth group. The potential
energies of these structures and the GA-optimized structures
�17� are shown in Fig. 7. For C21–C27 and C29, the potential
energies obtained by the TQM are lower than those from the
GA; for C30, the two methods have the same result. For C28,
however, the lowest-energy structure obtained by the TQM is
a flat-shaped isomer, whose energy is higher than that of the
cage-shaped isomer �Fig. 8� given by the GA method. Obvi-
ously, most of the results obtained by the TQM are consis-
tently lower than those by the GA, with the single exception
of C28. Of course, the GA is not a standard algorithm, but can
work with very different design choices or control param-
eters. So it can be expected for a deliberately designed GA to
find these global minima of small carbon clusters. However,
it is not very easy to design a correct GA. Notably, the TQM
is a simple method with only a few parameters that need to
be adjusted, and the “simply designed” TQM sometimes out-
performs an “elaborately designed” GA.

Considering that the cage-shaped C28 found by the GA is
not found in the fifth group by our method we then did more
TQM simulations with Tf increased to 4000 K, and success-
fully obtained cage-shaped C25 and C28 �Fig. 8� finally. Fur-
thermore, if the simulations start from cage-shaped structures
with higher energies, the TQM can quickly produce all the
cage-shaped Cn �n=21–30� clusters �global minima� �Fig.
8�, whether Tf =3000 or 4000 K. The potential energies of
these structures are also illustrated in Fig. 7.

The above simulations indicate that the TQM-optimized
results are not completely independent of the seeds. This

problem can be partially solved by a predetermined seed pro-
cedure as used in Sec. III C for the LJ38 cluster, where a
given number of atoms at higher temperatures are quenched
to 0 K, producing various seed isomers. Using this procedure
for small carbon clusters, we obtained cage-shaped seeds of
C25–C30, from which the global minima can be found
quickly. However, cage-shaped seeds of C21–C24 are not
produced in our limited simulations by the predetermined
seed procedure, for these cage seeds may reside in a very
small part of the PES, and are very difficult to find even with
many methods based on annealing. In the GA community,
some recipes have been invented to solve this problem, and
these recipes can be introduced to enhance the search ability
of the TQM in the future.

IV. CONCLUSIONS

A global optimization method, named the time-going-
backward quasidynamics method is developed in this paper.
This method is conveniently realized by just setting a nega-
tive integral time step in the dynamics process. This trivial
trick can notably help the system to jump over higher poten-
tial barriers during the optimization process, because when
evolving in this way the damping force accelerates the atoms
in the directions of their initial velocities and compels the
atoms to climb up the barriers. In the structural optimization
process, it means that the effectiveness of our TQM is high.
As examples, the TQM is used for LJ38 and C60 clusters, and
get the lowest-energy structures more easily than common
annealing methods. For small carbon clusters, the potential
energies of the structures obtained by the TQM are obviously
lower than those by an elaborately designed genetic algo-
rithm. This simple method can be used alone for many opti-
mization problems, or the TGB idea can be introduced into
many other annealing methods to improve their search abili-
ties.
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